Статические испытания электродвигателей Megger Baker Instruments

Докладчик: Региональный менеджер ООО "Меггер"

Елатенцев Алексей Владимирович. elatentsev@rusmegger.ru +7 909 658 9076

Megger Baker

- •Входит в группу компаний MEGGER
- Находится в Fort Collins, Колорадо, США
- Продажи по всему миру
- Сотрудники Baker, независимые представители и офисы Megger
- Сервисное обслуживание по всему миру
- Офис Baker в Ft. Collins, США, Suzhou, Китай, Schweinford Германия
- Авторизованные независимые поставщики услуг

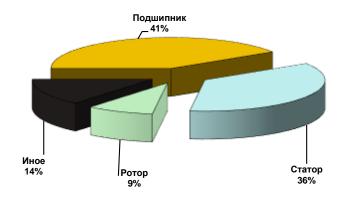
Megger Baker

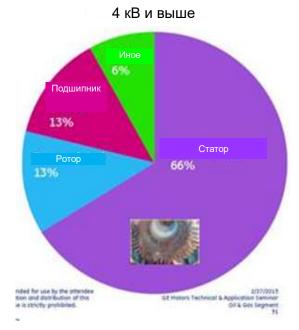
- Оборудование для тестирования качества изоляции обмоток электродвигателей
- Свыше 60 лет опыта в тестировании электродвигателей
- Входит в группу Megger с 2018

Том Бейкер

Что такое ЭДВ.

Вопрос заключается *НЕ в* том, выйдет ли мотор из строя

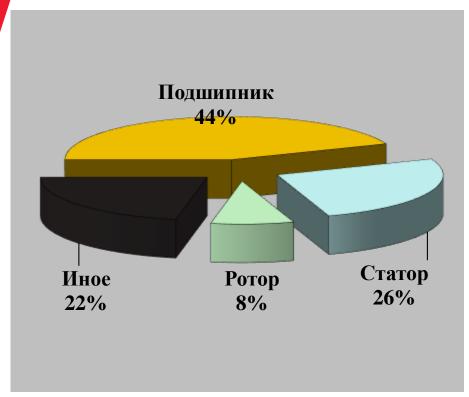

Вопрос заключается *в* том, *КОГДА* мотор выйдет из строя

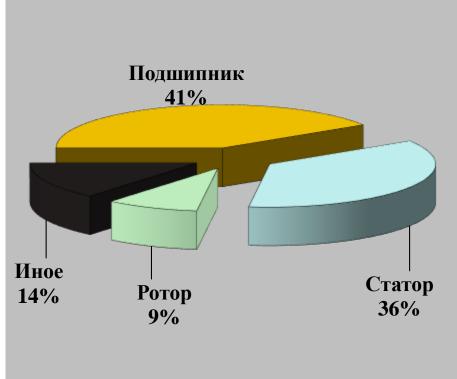


Зачем проводить электрические испытания для электродвигателей?

- От 30 % до 60 % всех отказов электродвигателей возникает из-за отказа изоляции
- Для раннего обнаружения слабых мест изоляции электродвигателя можно использовать статические электрические испытания!
- Контроль вибраций и формирование тепловых изображений не позволяют обнаружить слабые места изоляции.

Причины отказов промышленных электродвигателей


Источник: GE



Распределение отказов среди электромоторов

Исследование IEEE (начало 1990'x)

Иследование EPRI (середина 1990'х)

Сколько стоит надежность?

Перекачивающий насос на Маслозаводе. Возгорание мотора привело к распространению огня и пожару на территории завода. Общие потери превысили 15 млн.р.

В производственном здании предприятия «Фольгопрокатный завод» произошел отказ привода ёмкости с расплавом. Последствия отказа - 3 тонны жидкого алюминия, который вылился на стоящее внизу оборудование. Общие потери составили более 25 млн.р.

Последствия отказа электромотора

Базовые категории тяжести последствий отказов

Категория отказа	Тяжесть последствий
Катастрофичный отказ	Отказ, который быстро и крайне вероятно повлечет за собой значительный ущерб, как экономический так и экологический. Возможна гибель людей.
Критичный отказ	Отказ, который с высокой вероятностью повлечет значительный экономический (экологический) ущерб. Возможно получение травм персонала.
Некритичный отказ	Отказ приведет к задержке производственной задачи и снижению эффективности объекта. Нет опасности для окр.среды и персонала.
Отказ с пренебрежимо малыми последствиями	Финансовое влияние отказа минимально. Угроз персоналу, состоянию производственного объекта и экологии нет.

Надежность относительно стоимости обслуживания?

Работа до отказа \$17 - \$18 Per Hp Планово-предупредительное ТОиР \$11 - \$13 Per Hp ТО по состоянию \$7 - \$ 9 Per Hp

По данным исследовательской программы EPRI Study of Maintenance Programs (1983)

Что такое надежность?

Определение Надежности

Надежность - вероятность того, что система будет выполнять возложенные на нее функции в установленных пределах в течение определенного времени

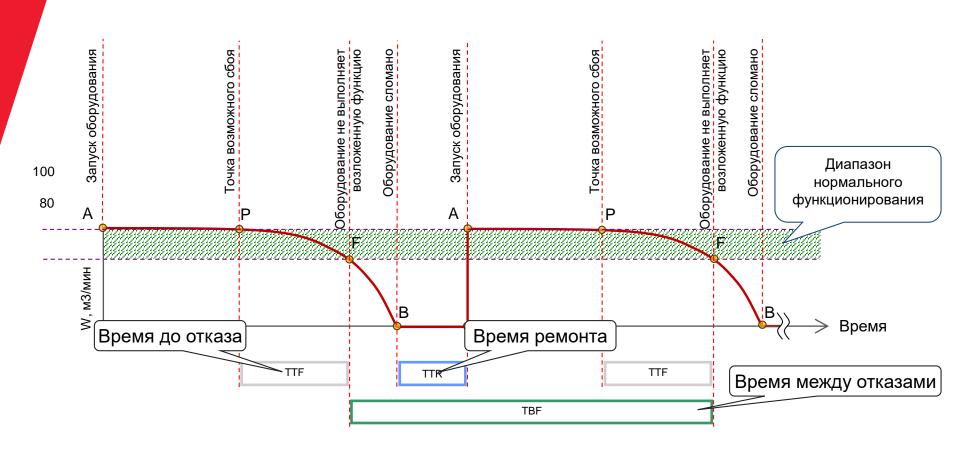
Институт инженеров по электротехнике и радиоэлектронике, IEEE Std 45-1998 Руководящие указания IEEE для электрических установок на борту суден Параграф 37.6 Проектирование систем управления — Общие положения

Функция -Ожидаемая работа

Надежность

Время - Необходимая продолжительность выполнения

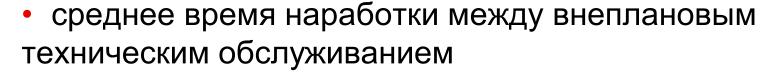
Параметры функции установленные пределы



Эволюция программ обслуживания

- ✓ Реактивное обслуживание
- ✓ Традиционное Планово-Предупредительное обслуживание и ремонт (PM Preventive maintenance)
- ✓ TO по состоянию (PdM Predictive Maintenance) включая Обходы Операторов (OR)
- ✓ Работа до Отказа (RTF)
- ✓ Проактивное ТО (включая проведение исследований RCM\FMECA\FMEA\RCA и т.д.)

Количественные показатели надежности


Среднее время работы до отказа - MTTF (Mean Time To Fail) Среднее время восстановления (простоя в ремонте) – MTTR (Mean Time To Repair) Среднее время между отказами - MTBF (Mean Time Between Failures)

Метрики надежности

Существует много способов определения количественных показателей надежности:

- среднее время жизненного цикла
- среднее время между отказами

Руководство по обеспечению надежности, ремонтопригодности и технической поддержки, Третье издание Общество инженеров-автомобилестроителей, Инк., Уоррендейл, ПА, 1995 г. Статья 3.7.1, Определение требований надежности

Оптимальный выбор стратегии обслуживания

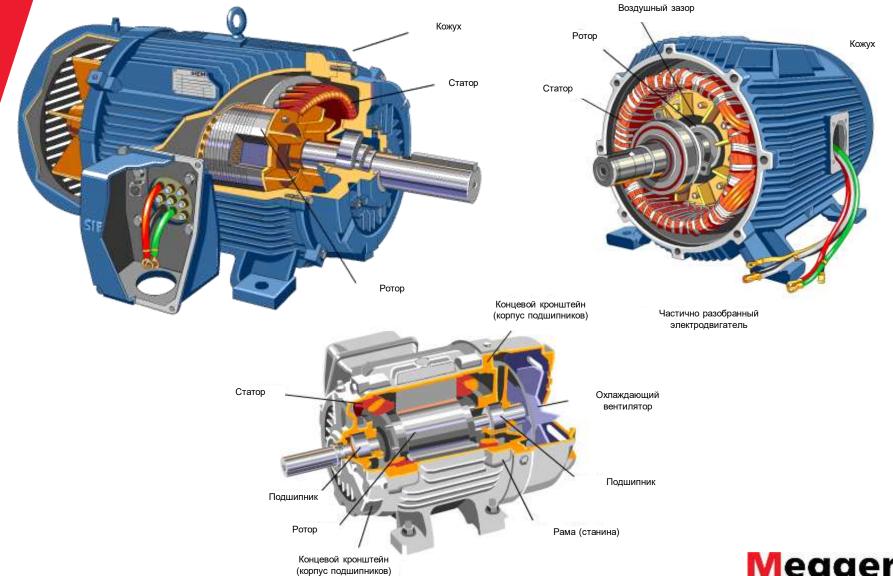
Выбор оптимальной стратегии ТОиР

Содержание

Знаем ли мы кто Пользователь электродиагностического оборудования? Да, безусловно! Это компании, которые ставят перед собой цель в виде роста надежности, повышения мех.готовности и увеличения прибыльности!

Содержание

- Конструкция электродвигателя и обмотки
- Отказы обмотки и изоляции электродвигателя
- Виды статических испытаний. Стандарты.
- Устройства Baker для статических испытаний



Конструкция электродвигателя и обмотки

Компоненты индукционного электродвигателя переменного тока

Типы электродвигателей и обмоток

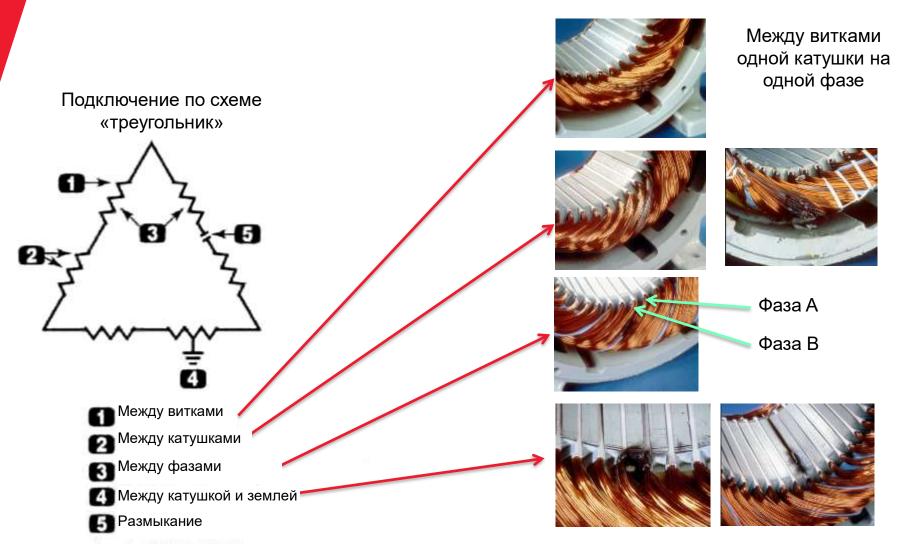
- <u>Типы электродвигателей и</u> <u>генераторов</u>
- Индукционный электродвигатель постоянного тока
- Электродвигатель постоянного тока
- Синхронный электродвигатель
- Тяговый электродвигатель
- Электродвигатель с постоянными магнитами
- Шаговый электродвигатель
- Электродвигатель с фазным ротором
- Электродвигатель двойного питания

- Типы конструкции обмотки
- Всыпная обмотка
- Петлевая обмотка
- Концентрическая обмотка
- Шаблонная обмотка
- Материал обмотки
- Медь
- Алюминий

Статические испытания электродвигателей, проводимые при помощи устройств Baker, используются на **всех** указанных типах электродвигателей, генераторов и обмоток

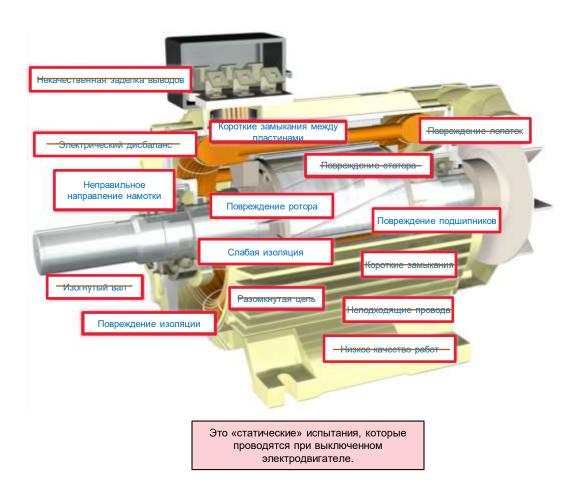
2

Отказы обмотки и изоляции электродвигателя



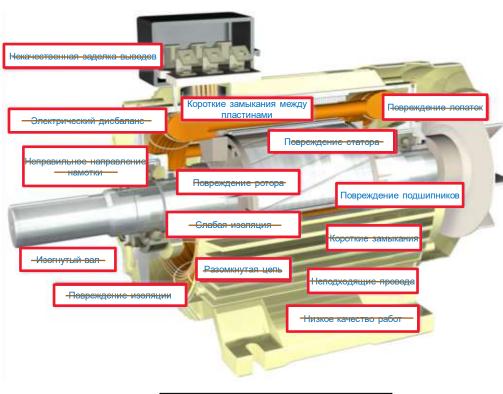
К счастью, большинство данных отказов можно выявить с помощью нескольких простых испытаний!

Виды отказов изоляции


3

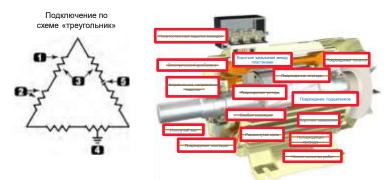
Устройства Baker для статических испытаний электродвигателей

Обнаружение отказов, связанных с конструкцией электродвигателя

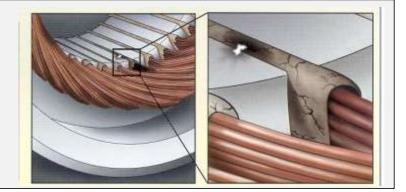

- Измерение сопротивления
 - Амплитуда и баланс между фазами
 - Электрический дисбаланс
 - Неподходящие провода (материал или размер)
 - Короткие замыкания
 - Размыкания
 - Неправильное количество витков
 - Некачественная заделка выводов
 - Отказы после ремонта
- Проверка (визуальная)
 - Изогнутый вал
 - Повреждение ротора
 - Повреждение статора
 - Повреждение лопаток
 - Низкое качество работ

Обнаружение отказов, связанных с конструкцией электродвигателя

- Испытания при постоянном токе
 - Проверка мегаомметром
 - Минимальная корпусная изоляция
 - Испытание шаговым напряжением
 - Линейность корпусной изоляции
 - Раннее обнаружение слабых мест
 - Испытание высоким напряжением
 - Корпусная изоляция при максимально возможных рабочих условиях
- Импульсное испытание
 - Межвитковая изоляция
 - Межфазная изоляция
 - Изоляция между катушками
 - Короткие замыкания в обмотке
 - Размыкания в обмотке
 - Неправильное количество витков
 - Неправильное направление намотки

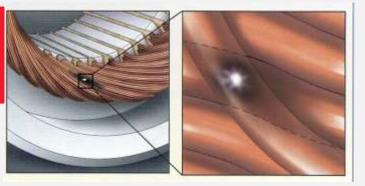


Это «статические» испытаний, которые проводятся при выключенном электродвигателе.



Обнаружение всех отказов изоляции электродвигателей

- Проверка мегаомметром (Megger)
 - Частичная проверка корпусной изоляции
 - Частичная проверка изоляции между катушкой и землей

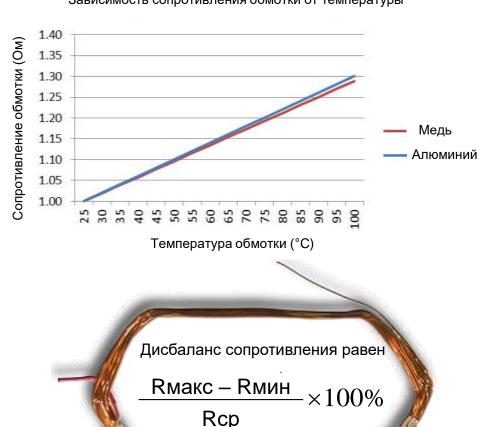


- Испытания высоким напряжением постоянного тока (испытания высоким напряжением, испытания шаговым напряжением, испытания линейно изменяемым напряжением, испытания показателя поляризации (PI) и диэлектрической абсорбции (DA))
 - Полная проверка корпусной изоляции
 - Полная проверка изоляции между катушкой, фазой, витком и землей

- Импульсное испытание
 - Между фазами
 - Изоляция между катушками
 - Между витками
 - Неправильное направление намотки

Самый распространенный отказ изоляции!

Ø

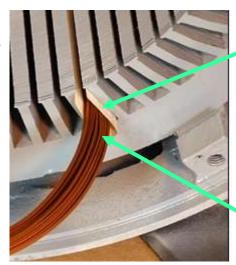

8

Важные замечания – измерение сопротивления

Измерение сопротивления

- Неправильное количество витков
- Неправильный материал или диаметр проводов
- Соединения с высоким сопротивлением
- Короткое замыкание в обмотке
- Размыкание в обмотке
- Значения сопротивления зависят от температуры
- Статические анализаторы Baker могут корректировать измеренные значения с учетом температуры.
 Если электродвигатель недавно работал, следует ввести температуру обмотки, а не окружающей среды!

Зависимость сопротивления обмотки от температуры

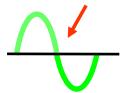


Пример: 1-2=0,80 Ом; 2-3=0,85 Ом; 1-3=0,90 Ом. Дисбаланс R =11,7%

Важные замечания – прочность изоляции

- <u>Прочность новой изоляции электродвигателя</u>
 <u>очень высока</u>
- Прочность изоляции электродвигателя 460 В перем. тока составляет 28 400 В пост. тока
- Рекомендованное напряжение для статических испытаний равно 1920 В пост. тока (испытание высоким напряжением постоянного тока и импульсное напряжение)
- Статические испытания не приводят к повреждению изоляции электродвигателя

Пазовая гильза имеет изоляцию с номинальным напряжением 20 000 В пост. тока (Nomex-Mylar-Nomex) Данная изоляция и изоляция обмотки образуют корпусную изоляцию

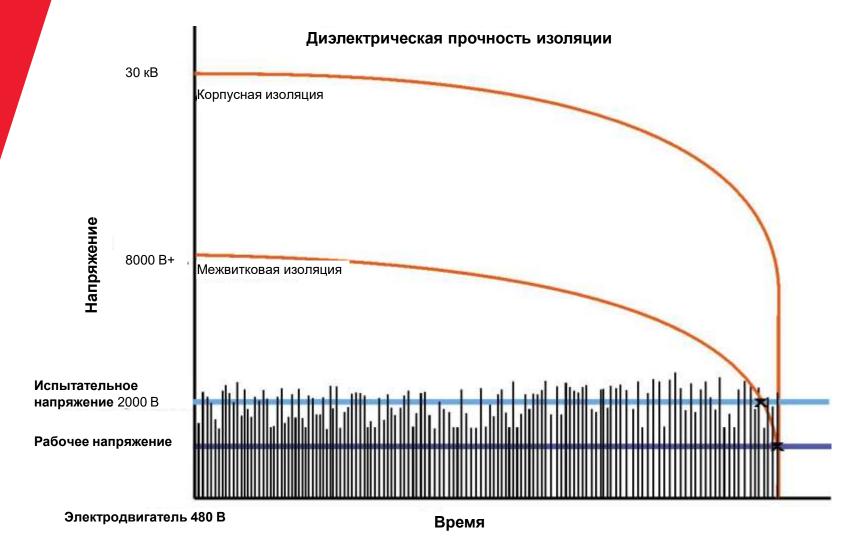

Согласно промышленному стандарту NEMA MG-1 провод электродвигателя 460 В перем. тока имеет изоляцию 6000 В перем. тока Это межвитковая изоляция

Статические испытания, предусмотренные международными стандартами, включают в себя: IEEE 522, IEC 34-15, NEMA MG1, NFPA 70B, EASA

Общая прочность корпусной изоляции (460 В

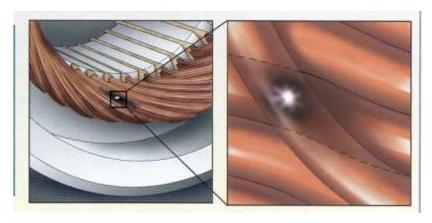
перем. тока электродвигателя) = 20 000 + 8400 В пост. тока = **28 400 В пост. тока** 6000 В перем. тока √2=8400 В пост. тока

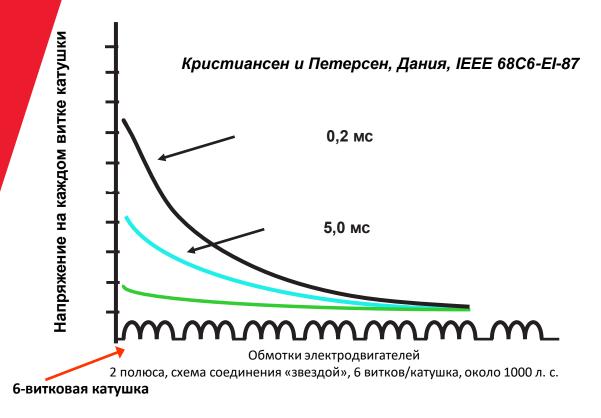
8400 В пик. = 6000 В СКЗ


Со временем прочность изоляции снижается

Факторы, влияющие на нормальный износ электродвигателя:

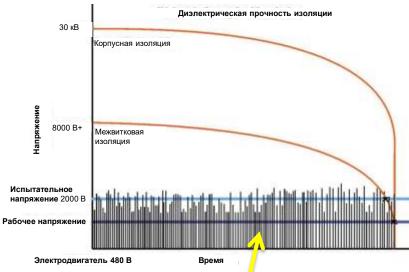
- Температура: увеличение температуры обмотки на каждые 10 °C по сравнению с номинальной температурой приводит к сокращению срока службы вдвое.
 Примечание: при слишком большой высоте номинальные характеристики должны быть уменьшены
- Химические вещества (загрязнения, в т. ч. вода)
- Механические воздействия (вибрации, трение, износ) и перемещение внутри обмотки во время пуска
- Импульсные скачки напряжения перенапряжение, вызванное переключением при пуске, молнией, ЧРП


Со временем прочность изоляции снижается


Большинство отказов начинается с проблем с межвитковой изоляцией

- Межвитковая изоляция самая слабая изоляция в электродвигателе
- Химические отложения разрушают изоляцию
- «Механизм отказов электродвигателей».
 - компания «General Electric»
 - Перемещение во время пуска вызывает истирание между витками и, следовательно, износ
 - Перепады температур
 - Разные коэффициенты расширения
 - Ухудшение состояния лаковой изоляции при повышенных температурах
 - Напряженность магнитного поля из-за тока в обмотке
- Повреждения, полученные во время намотки
- Скачки напряжения и перегрев из-за ЧРП
- Торцевые витки испытывают наибольшие нагрузки при нормальных скачках напряжения во время пуска / остановки

Распределение напряжение между катушками электродвигателя


- При уменьшении времени увеличения напряжения все большее напряжение концентрируется на нескольких первых витках
- Переходное напряжение во время пуска и остановки электродвигателя очень быстро растет (менее чем за 0,2 мс)

Из-за воздействия сильного механического напряжения, химического загрязнения и электрических нагрузок при переходных напряжениях **отказы межвитковой изоляции на торцевых витках** являются наиболее распространенной проблемой с изоляцией.

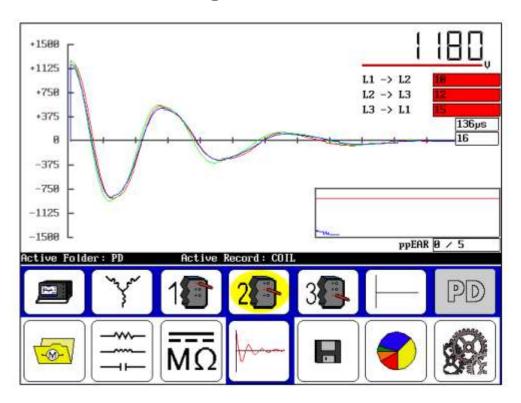
Стандартные этапы электрических отказов электродвигателя

- 1. Прочность изоляции нового электродвигателя очень высока
- 2. Стандартные факторы, влияющие на износ электродвигателя:
 - температура
 - химические вещества
 - механические воздействия
 - электрические воздействия
- 3. Прочность изоляции опускается ниже уровня коммутационных перенапряжений
- 4. При пуске электродвигателя возникает дуга
- 5. Изоляция начинает быстрее изнашиваться
- 6. Прочность изоляции опускается ниже рабочего напряжения
- 7. Замыкания предохранителей из-за высокой энергии в линии переменного тока электродвигателя
- 8. Срабатывание траснформатора в закороченной цепи приводит к высокому наведенному току, сильному нагреву, плавлению обмотки и отказу корпусной изоляции
- 9. Быстрый отказ

Нормальные импульсные скачки напряжения, наблюдаемые во время пуска и остановки электродвигателя. Они могут значительно превышать рабочее напряжение.

Важная роль импульсных испытаний

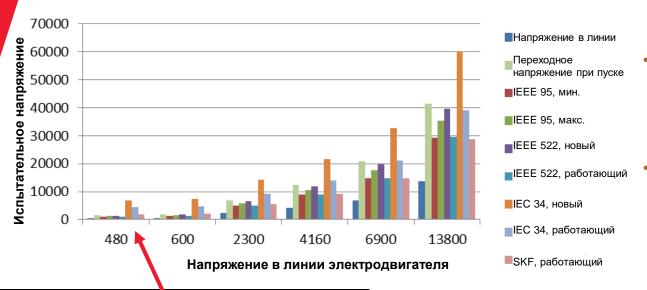
- **Импульсное испытание** <u>единственный</u> надежный способ обнаружения слабой изоляции между витками обмотки электродвигателя
- Обнаружение слабых мест <u>до</u> отказа электродвигателя позволит оператору <u>действовать</u> <u>наперед</u>



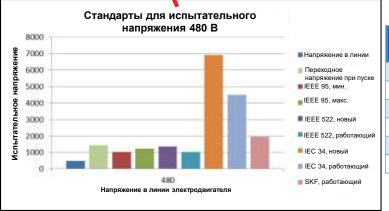
- Импульсные испытания имитируют условия работы электродвигателя во время нормального пуска и остановки
- Устройства для проведения импульсных испытаний не имеют достаточной энергии для поддержания дуги и, следовательно, не могут создать короткое замыкание
- Рекомендованные напряжения для импульсного испытания работающих электродвигателей гораздо ниже испытательных напряжений для новых электродвигателей и ниже напряжений, возникающих при пуске и остановке электродвигателей

Что такое импульсное испытание?

- Импульсное испытание имитирует пуск электродвигателя
- Быстро увеличивающееся напряжение подается на обмотку электродвигателя
- Слабые места изоляции становятся очевидными при изменении частоты колебаний
- Отказы, связанные с конструкцией катушки, проявляются в виде разницы значений для разных фаз
- Уровень подаваемого напряжения четко контролируется
- Энергии недостаточно для повреждения обмотки
- Малая продолжительность импульсного испытания: обычно 1 миллисекунда



Статические анализаторы электродвигателей Baker (серии Baker AWA и Baker DX) автоматически анализируют скачкообразные колебания для обнаружения слабых мест изоляции и отказов, связанных с конструкцией катушки



Рекомендованные напряжения при импульсных испытаниях

Стандарты для испытательного напряжения; напряжение в линии и переходное напряжение

- У Испытательные напряжения для новых электродвигателей значительно превышают рабочее напряжение
- В используемых электродвигателях испытательные напряжения меньше стандартных переходных напряжений при пуске
 - Рекомендованные испытательные напряжения оказывают большее воздействие при низких напряжениях в сети

Напряжение в линии	Переходное напряжение при пуске	IEEE 95, мин.	IEEE 95, makc.	ІЕЕЕ 522, новый	IEEE 522, работающий	IEC 34, новый	IEC 34, работающий	SKF, работающий
480	1440	1020	1224	1372	1029	6920	4498	1960
600	1800	1275	1530	1715	1286	7400	4810	2200
2300	6900	4888	5866	6573	4930	14200	9230	5600
4160	12480	8840	10608	11888	8916	21640	14066	9320
6900	20700	14663	17596	19718	14789	32600	21190	14800
13800	41400	29325	35190	39437	29578	60200	39130	28600

Импульсное испытание

Испытания в месте установки

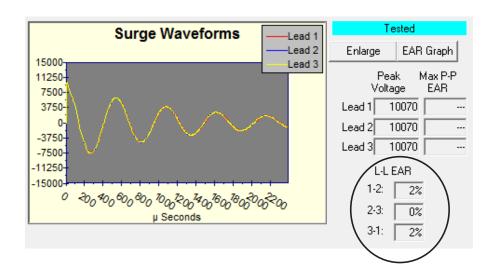
- Слабая изоляция электродвигателя
 - Межвитковая изоляция
 - Межфазная изоляция
 - Изоляция между катушками
- Слабая изоляция питающего кабеля
- Ненадежные соединения

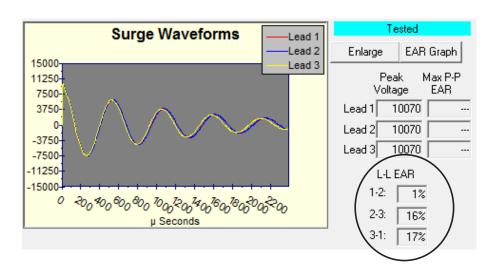
Профилактическое техническое обслуживание

- Выполнить анализ межвиткового коэффициента площади ошибок (PP-EAR)
- Не сравнивать формы колебаний каждой фазы, поскольку на них влияет ротор

Испытания в мастерских (без ротора)

- Слабая изоляция между витками, фазами, катушками
- Изменение полярности катушек
- Короткие замыкания между витками
- Разное количество витков
- Разные размеры медных проводов
- Короткие замыкания между пластинами


Использование в мастерских по ремонту и отделах контроля качества

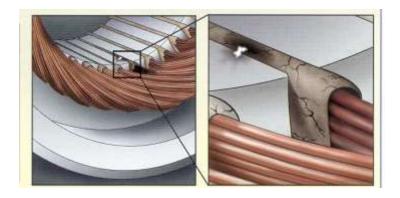

- Сравнить формы колебаний между фазами (нет влияния ротора)
- Использовать оценочное значение межфазного коэффициента площади ошибок

Пример: насос водяного охлаждения для сталепрокатного стана

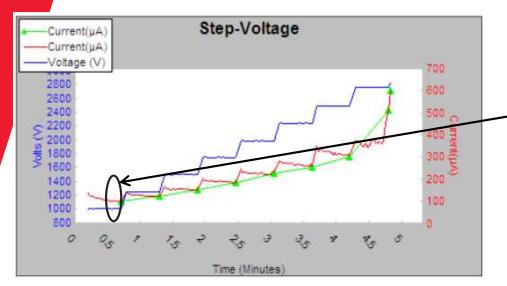
- Электродвигатель 600 л. с., 6600 В
- был отправлен в мастерскую по ремонту на перемотку
- Импульсное испытание после перемотки (до пропитки в вакууме под давлением (VPI)) дало хорошие результаты:
 Межфазный коэффициент площади ошибок: <5%
- Пропитка в вакууме под давлением (VPI) выполнялась в другом месте, в результате чего транспортировка электродвигателя заняла несколько часов
- Импульсное испытание после пропитки в вакууме под давлением (VPI) было пройдено, после получения высокого межфазного коэффициента площади ошибок электродвигатель вернули владельцу
- По запросу заказчиков электродвигатель проверяли на стенде без чрезмерных вибраций или дисбаланса тока

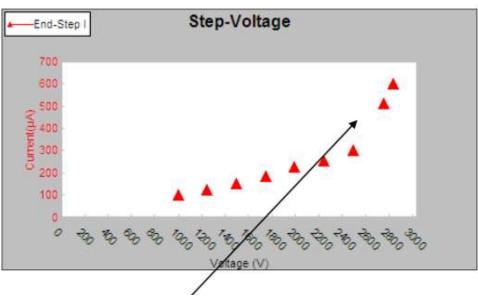
Насос водяного охлаждения для сталепрокатного стана

- Несмотря на рекомендации работников мастерской, заказчик принял решение повторно ввести в эксплуатацию электродвигатель для сталепрокатного стана.
- Электродвигатель был установлен в понедельник и работал хорошо.
- В четверг во время пуска электродвигателя он загорелся, в результате чего пришлось вызывать пожарную команду.
- Данного отказа можно было избежать, однако в результате сталепрокатный стан простаивал в течение нескольких дней, пришлось дополнительно оплачивать перемотку электродвигателя, а вызов пожарной команды нанес ущерб репутации компании.



Испытания при постоянном токе


Испытания корпусной изоляции при постоянном токе


- Проверка мегаомметром (Megger)
 - Частичная проверка корпусной изоляции
 - Частичная проверка изоляции между катушкой и землей
 - Обычно используется рабочее или более низкое напряжение
- Испытания высоким напряжением постоянного тока (испытания высоким напряжением, испытания шаговым напряжением, испытания линейно изменяемым напряжением, испытания показателя поляризации (PI) и диэлектрической абсорбции (DA))
 - Полная проверка корпусной изоляции
 - Полная проверка изоляции между катушкой, фазой, витком и землей
 - Разрушение изоляции является нелинейным, прочность изоляции изменяется в зависимости от напряжения
 - Испытания при напряжениях, используемых в электродвигателе при нормальной работе
 - 2 x напряжение в сети + 1000 B
 - Испытания в соответствии с промышленными стандартами IEEE и IEC

Пример – корпусная изоляция находится в хорошем состоянии?

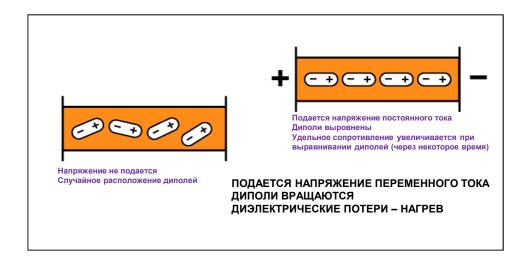
- Асинхронный генератор двойной подачи, подключенный к ветровой установке мощностью 2 МВт
- Проверка мегаомметром позволяет выяснить, что высокое сопротивление (МОм) превышает требуемый минимум, но это не гарантирует отсутствие проблем с изоляцией (из-за наличия влаги или загрязнений), поскольку проверка мегаомметром создает высокое сопротивление в конце 60-секундного испытания при низком испытательном напряжении.
- Испытание шаговым напряжением позволяет получить достаточно четкую картину того, как ток утечки реагирует на увеличение подаваемого напряжения.

Нелинейный ток утечки свидетельствует о слабой изоляции

Испытания показателя поляризации (PI) и диэлектрической абсорбции (DA)

Испытания показателя поляризации (PI) и диэлектрической абсорбции (DA) – испытания корпусной изоляции высоким напряжением постоянного тока. Они позволяют обнаружить:

- слабые места корпусной изоляции
- гниющую, жесткую, хрупкую корпусную изоляцию, наличие загрязнений

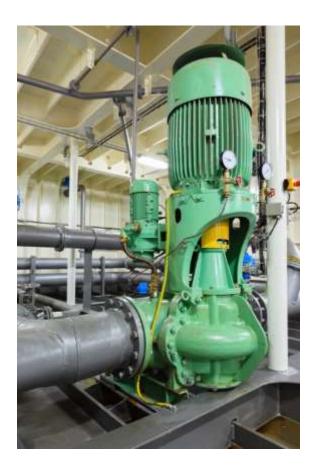

Показатель поляризации (РІ) рассчитывается как

• отношение сопротивления изоляции после десяти (10) минут непрерывной подачи постоянного тока к сопротивлению изоляции после одной (1) минуты

Диэлектрическая абсорбция (DA) рассчитывается как

• отношение сопротивления изоляции после трех (3) минут непрерывной подачи постоянного тока к сопротивлению изоляции после тридцати (30) секунд

Желательно, чтобы показатель поляризации (PI) и диэлектрическая абсорбция (DA) были больше 2.


Проведение статических испытаний

Статическое испытание подходит для индукционных электродвигателей постоянного тока, электродвигателей постоянного тока, синхронных электродвигателей, электродвигателей с постоянными магнитами и т. д.

- Электродвигатель отключен от источника питания
- Испытания проводятся на щите управления электродвигателями (МСС) или на выводах электродвигателя
- Рекомендованное испытательное напряжение для устройств Baker равно сумме удвоенного номинального напряжения и 1000 В (аналогично требованиям IEEE, IEC)
 - Импульсные испытания и испытания постоянным током
 - Неразрушающие испытания

Заказчики

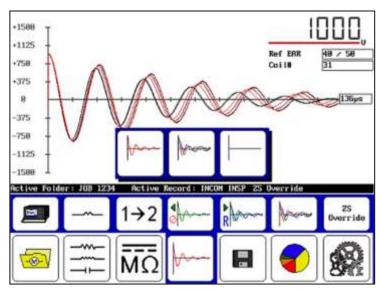
- Мастерские по ремонту и восстановлению электродвигателей
- Промышленное профилактическое техническое обслуживание
 - Производство электроэнергии, в т. ч. ветровые генераторы
 - Железные дороги
 - Целлюлозно-бумажная промышленность
 - Все варианты использования в промышленности
 - Предоставление услуг
- Производители электродвигателей и катушек

Baker AWA-IV: автоматизированные, надежные и воспроизводимые результаты

- Полная проверка электродвигателей
 - Измерение сопротивления
 - Проверка мегаомметром
 - Испытания высоким напряжением постоянного тока
 - Импульсное испытание
- Сравнение с предельными значениями для упрощения обнаружения отказов
- Генерация отчетов и отслеживание тенденций изменения результатов
- Возможность программирования гарантирует точность и воспроизводимость
 - Типы и последовательность испытаний
 - Испытательные уровни
 - Предельные значения для результатов
 - Понятный интерфейс пользователя на базе ОС Microsoft
 - Минимизация или отключение возможности внесения изменений оператором

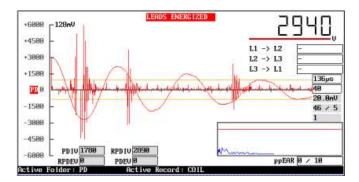
Статические анализаторы электродвигателей Baker AWA-IV

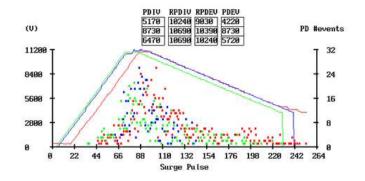
- Baker AWA-IV, модели 2 кВ и 4 кВ
 - Компактные размеры
 - Идеальный вариант для испытаний низковольтных электродвигателей (с напряжением до 1500 В)
- Baker AWA-IV, модели 6 кВ и 12 кВ
 - Идеальный вариант для испытаний высоковольтных электродвигателей на месте установки
 - Модель 12 кВ с высоким уровнем выходного сигнала (НО) для испытаний электродвигателей при высоком напряжении (> 4160 В)
 - Возможность расширения функциональности при помощи источника питания РР30 (30 кВ)
- Интерфейс пользователя на базе ОС Windows
 - Простота использования
 - Возможность подключения к сети для проведения испытаний и сохранения данных
 - Ввод с помощью сенсорного экрана и клавиатуры



Статические анализаторы Baker DX – бюджетный вариант для полной проверки электродвигателей

- Baker DX, модели 4 кВ, 6 кВ, 12 кВ, 15 кВ
 - Полная проверка электродвигателей
 - Измерение сопротивления, индуктивности и емкости
 - Проверка мегаомметром
 - Испытания высоким напряжением постоянного тока
 - Импульсные испытания, в т. ч. с анализом частичного разряда
 - Ручной режим работы анализатора
 - Предельные значения для импульсных испытаний
 - Идеальный вариант для мастерских по ремонту и для профилактического технического обслуживания
- Интуитивно понятный интерфейс пользователя
 - Простота использования
 - Сенсорный экран
- USB-порт для экспорта данных и печати отчетов
- Опции: испытания якоря постоянного тока, проверка влияния ротора (RIC), настольное приложение для генерации отчетов, контроллер источника питания Baker (30 кВ и 40 кВ) и т. д.





Общая информация об импульсных испытаниях с анализом частичных разрядов при помощи Baker DX

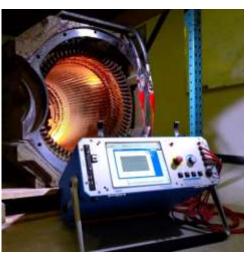
- Частичный разряд (ЧР) во время импульсного испытания признак скорого отказа изоляции, свидетельствующий о ранних стадиях разрушения изоляции
- Испытания с анализом частичного разряда используются для:
 - поверки качества компонента электродвигателя, встроенного во время производства электродвигателя
 - испытательных измерений для консервации и профилактического технического обслуживания на клеммах электродвигателя
 - проверки качества капитального ремонта изоляции и перемотки электродвигателя
- Анализатор Baker DX для импульсных испытаний с анализом частичных разрядов – бюджетный и точный способ обнаружения частичного разряда на основании сопротивления
- Он устойчив к изменению показаний, характерному для ВЧ-методов (отсутствие антенн), и использует широкую полосу пропускания для обнаружения частичных разрядов
- Теперь он доступен в качестве опции для новых анализаторов Baker DX
- Имеющиеся устройства Baker DX также могут быть модернизированы путем установки опции для анализа ЧР
- Результаты могут быть экспортированы в приложение Surveyor DX для анализа данных, архивирования и генерации отчетов
- Данное устройство соответствует требованиям стандарта IEC 61934, в т. ч. с точки зрения проверки чувствительности и фонового шума

Общая информация

Статические анализаторы Baker позволяют <u>полностью</u> испытать обмотку и изоляцию электродвигателя

Конструкция электродвигателя

- Необходимые испытания для полной проверки
 - измерение сопротивления
 - испытания высоким напряжением постоянного тока
 - импульсное напряжение
- Данные испытания позволяют проверить
 - конструкцию обмотки электродвигателя
 - баланс, количество витков, тип проводов, короткие замыкания, размыкания
 - изоляцию электродвигателя
 - корпусную изоляцию
 - межвитковую изоляцию
 - изоляцию между катушками
 - межфазную изоляцию



Статические анализаторы Megger Baker Instruments

- Простота использования
- Понятная информация о результатах диагностики
- Используемые шаблоны и нормы упрощают принятие решений
- Неразрушающее испытание
- Что касается проверки мегаомметром:
 - полная оценка изоляции обмотки электродвигателя, в т. ч. наиболее распространенной причины отказов электродвигателей оценка отказа межвитковой изоляции
 - полная оценка корпусной изоляции при рабочих напряжениях электродвигателя
- Данный способ используется в промышленности более 60 лет
- Основные достоинства анализатора AWA: автоматический режим, работа на базе ОС Windows, возможность подключения к сети Интернет
- Анализатор DX бюджетный, компактный и портативный прибор, позволяющий проводить испытания в ручном режиме, отлично подходящий для мастерских и для профилактического технического обслуживания

Спасибо за внимание!

Подробную информацию можно получить, отправив письмо на электронный адрес: elatentsev@rusmegger.ru

или посетив сайт: megger.com/baker

